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8.1 Shoelace formula

Figure 8.1: A 5-gon

Using Green’s theorem, we have a formula to compute the area of a polygon in the plane R2 if we know
the coordinates of the vertices.

A planar simple polygon P is represented by a positively oriented (counter clock wise) sequence of points
Pi = (xi, yi) , i = 1, . . . , n in the Cartesian coordinate system. For the simplicity of the formulas below it is
convenient to set P0 = Pn, Pn+1 = P1. Figure 8.1 is an example of a polygon for n = 5. Suppose the boundary
of P is denoted by ∂P which consists of straight line segments PiPi+1.

Theorem 8.1 (Shoelace formula)

♡
|P | = 1

2

n∑
i=1

(xiyi+1 − xi+1yi) =
1

2

n∑
i=1
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Figure 8.2: Shoelace scheme

Proof The area of P is |P | =
∫∫

P 1dxdy. By Green’s theorem,

|P | =
∫∫

P
1dxdy =

1

2

∮
∂P

xdy − ydx =
1

2

n∑
i=1

∫
PiPi+1

xdy − ydx

Let c : [0, 1] → PiPi+1 by c(t) = (xi + (xi+1 − xi)t, yi + (yi+1 − yi)t) be a parametrization of the
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segment PiPi+1. Then we have∫
PiPi+1

xdy − ydx

=

∫ 1

0
(xi + (xi+1 − xi) t) (yi+1 − yi) dt−

∫ 1

0
(yi + (yi+1 − yi) t) (xi+1 − xi) dt

=

∫ 1

0
(xiyi+1 − yixi+1) dt

=det

(
xi xi+1

yi yi+1

)
Therefore

|P | = 1

2

n∑
i=1

(xiyi+1 − xi+1yi) =
1

2

n∑
i=1
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Remark It is hard to generalize the proof to high dimensions to compute volume of polytopes. Given a
n-dimension polytope P in Rn. Then Stokes’s theorem implies

|P | =
∫
P
1dx1dx2 · · · dxn =

∫
∂P

x1dx2 · · · dxn

Although the computation is reduced to dimension n− 1, it is still complicated to compute.
On the other hand, there is a direct way via linear algebra. We may assume the facets of P is the union

of simplexes by triangulation. Firstly we could compute the volume of a simplex ∆n spanned by n+ 1 points
Pi = (x1i , x

2
i , · · · , xni ), i = 1, · · · , n+ 1 using determinants.

For convenience, let’s assume n = 3, then

| ∆3 |= | det

 x12 − x11 x13 − x11 x14 − x11
x22 − x21 x23 − x21 x24 − x21
x32 − x31 x33 − x31 x34 − x31

 |

=| det (P2P3P4) + det (P3P1P4) + det (P1P2P4) + det (P2P1P3) | .

Here det (PiPjPk) = det

 x1i x1j x1k
x2i x2j x2k
x3i x3j x3k

. The second equality is by multi-linearity of determinant.

By cancellation, the determinant about a common facet of two simplexes does not contribute. So if we
assume P is a polytope whose facets are all simplexes, then |P | = |

∑
det (Pi1Pi2 · · ·Pin) |. The summation

is taken over sequences of n vertices that form a facet of P in the order that has a compatible orientation.

8.2 Isoperimetric inequality

Theorem 8.2 (The Isoperimetric Inequality)
Let c(t) = (x(t), y(t)), t ∈ [0, 1] be a simple, closed, positively oriented and regular parameterised
curve with t ∈ [a, b]. Denote the area enclosed in the above defined curve c(t) with A. Denote the length
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♡

of c(t) by l :=
∫ 1
0

√
x′(t)2 + y′(t)2dt, we then have

A ≤ l2

4π
with equality iff c(t) is a circle.

The theorem comes from the question: Among all closed curves in the plane of fixed perimeter, which
curve (if any) maximizes the area of its enclosed region?
Proof

The function x(t) must be bounded. Say m = maxt∈[0,1] |x(t)|. We may assume domain bounded by
the curve c is convex, and by horizontal shifting we may assume x′(t) > 0, 0 < t < p;x′(t) > 0, p < t <

1, x(0) = −m,x(p) = m.
Define a circle by the parametrization k(t) = (x(t), z(t), z(t) = −

√
m2 − x(t)2 for 0 ≤ t < p and

z(t) =
√
m2 − x(t)2 for p ≤ t ≤ 1.

The area A =
∮
c xdy =

∫ 1
0 x(t)y′(t)dt. Let B be the area enclosed by k(t). Then B =

∫ 1
0 x(t)z′(t)dt =

−
∫ 1
0 z(t)x′(t)dt = πm2. Add A to B,

A+B = A+ πm2 =

∫ 1

0

(
y′x− zx′

)
dt

≤
∫ 1

0

√
(y′x− zx′)2dt

≤
∫ 1

0

√
(x2 + z2)

(
(x′)2 + (y′)2

)
dt

=

∫ 1

0
m
√

x′(t)2 + y′(t)2dt = lm

By mean inquality,
√
A
√
πm2 ≤ A+ πm2

2
≤ lm

2

⇒ A ≤ l2

4π

To get equality, we have A = πm2 = 1
2 lm and −xx′ = zy′ for all the inequality above. Squaring we get

x2(x′2 + y′2) = m2y′2. We may assume x′2 + y′2 = l2 by choosing a different parametrization. Thus
2πx = ±y′. Exchanging the role of x and y we got 2πy = ±x′. Finally

x2 + y2 =
1

4π2
(x′2 + y′2) =

l2

4π2
= m2

So c(t) is a circle of radius m.

8.3 Area of surface of revolution

Problem 8.1 Let S be the surface of revolution obtained by rotating r(t) = (f(z), z), f(z) > 0, z ∈ [a, b]

around the z-axis. Show that its surface area is given by

2π

∫ b

a
f(z)

√
1 + f ′2(z)dz.

Derive this formula using Riemann sum approach.
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